

NIHILIUM
Web3 ‘forget your password’ made possible
A new access-control primitive

Summary

Nihilium is a cryptographic protocol for universal, uncensorable key recovery — the
Web3 equivalent of “forgot my password.”

Today, private key recovery is one of the biggest hurdles to mass adoption of self-custody and
privacy-preserving applications [1][2][3]. Existing approaches suffer from three fatal flaws:

●​ Context-locked: Recovery is tied to a single wallet, blockchain, or service. Your
Ethereum wallet recovery doesn’t help you access an encrypted backup, or vice versa.​

●​ Orchestration burden: Solutions like social recovery or seed phrases require users to
coordinate backups or validators manually. In practice, this is where the UX problems
originate from.​

●​ Censorship-prone: Custodial recovery, KYC checks, or simply service denial introduce
points where access can be denied. Under regulatory or geopolitical pressure, this risk
becomes critical.​

Nihilium solves all three problems. It uses cryptographic commitments and game-theoretic
incentives — the same mechanisms that secure blockchains — to ensure recovery is
context-agnostic, user-friendly, and resistant to censorship.

By removing these barriers, Nihilium makes self-sovereign, UX-friendly key recovery possible
for the first time.

https://www.coinbase.com/en-nl/blog/evolving-wallets-to-bring-a-billion-users-onchain
https://cointelegraph.com/news/web3-adoption-main-issue-seed-phrases-wont-work-mainstream-users
https://dl.acm.org/doi/pdf/10.1145/3706598.3713209

The core concept

​
Sealed Packages

At the core of Nihilium is the sealed package: a public key that encrypts a secret, paired with a
private key that no party has ever seen. Recovering the secret — unsealing — is only possible
when the requesting party proves that specific conditions are met.

Because processors/nodes cryptographically commit to these conditions, they are bound to
execute when valid proofs are provided. If a private key leaks prematurely, or a processor
refuses to act, it triggers a slashable event — provable misbehavior that destroys their stake.
Crucially, even a single processor is enough: the rules enforce censorship resistance regardless
of network size.

Enforcement Layer

Enforcement lives on-chain, but it is only invoked when something goes wrong. In normal
operation, processors and clients never need to touch the blockchain. The only constant
transaction requirement is the public anchoring of an unseal initiation — a timestamped marker
that makes every recovery attempt observable. As long as processors behave honestly, the
protocol runs entirely off-chain and can scale indefinitely. On-chain execution is the last line of
defense if a slashable event occurs or when a processor refuses to execute.

Unseal Conditions

Unseal conditions are modular and application-specific. As long as a proof can be verified
on-chain, it can serve as a gate. Examples include:

●​ Ownership of an email account (via ZKEmail)
●​ Proof of public key possession
●​ Timelocks
●​ Credentials signed by another authority
●​ TLS-Notary attestations
●​ ZKPassport proofs of identity fields (e.g., date of birth)​

Unlike custodial/gated systems, the onus of proof lies with the recovering party, not with the
processor. This keeps processors lightweight and stateless, reducing complexity and attack
surface.

Architecture

Nihilium’s architecture revolves around three components: Clients, Processors, and the
Enforcement Layer, bound together by modular Unseal Conditions.

Clients

Clients initiate sealing and carry most of the cryptographic workload. To seal a secret, the client
produces a Severed Commitment — a zero-knowledge proof that transforms commitments in a
way that generates the unseal initiation value. This ensures that:

●​ The unseal conditions themselves are never revealed to processors.
●​ The sealed and unsealed states cannot be linked, preserving unlinkability and privacy.​

Because the client defines the unseal conditions, responsibility for recovery lies entirely with the
recovering party — not with custodians or intermediaries.

Redundancy with Shamir Secret Sharing

For resilience, the client SDK supports recovery thresholds using Shamir Secret Sharing. A
sealed secret can be split into multiple shares distributed across different processors, so that
recovery remains possible even if some processors are unavailable or go offline. This is purely a
redundancy mechanism: it strengthens liveness but does not alter the core security model.
Nihilium’s censorship-resistance and enforcement guarantees hold even with a single sealed
package.

Processors

Processors commit to unsealing when the conditions are met. Their role is intentionally
lightweight:

●​ They generate random data, sign the client’s request, and become bound to act.
●​ They anchor activity through their own data-stream, an efficient batching method for

publishing commitments on-chain, scaling to millions of inserts per block-time.
●​ When an unseal request arrives, processors pull validation bytecode directly from the

blockchain and execute it in memory. This guarantees alignment with the enforcement
layer and allows the protocol to evolve without processor software updates.​

To ensure long-term liveness, processors are economically incentivized through fixed staking
periods and mandatory shutdown signals. Each processor operates within a must-act window: if
it stops responding abruptly, its stake can be slashed. If it intends to exit, it must follow a
predefined shutdown schedule, giving clients and the network time to adjust. These mechanics
discourage short-lived or unreliable processors and encourage stable, committed participation.

For operational security, processors can run inside TEEs (trusted execution environments), but
the protocol does not depend on this assumption.

Enforcement Layer

The blockchain is the arbiter of last resort. Its functions are:

●​ Register processors and hold their stake.
●​ Maintain the repository of validation contracts for unseal conditions.
●​ Enable challenges when secrets leak prematurely.
●​ Force processors to act and reply on-chain, with ZK proofs ensuring verifiability.​

If everything runs smoothly, the chain is almost dormant, used only for processor onboarding
and staking updates. On-chain execution is only required when a slashable event occurs. This
design allows the network to scale indefinitely while remaining censorship-resistant.

Unseal Conditions

Unseal conditions are the most flexible part of the protocol. They form an execution path — the
unseal condition root — which the client commits to at sealing. To unseal, the client must
gather and prove all steps in this path.

The framework supports a small set of primitives:

●​ Prepare proof (with verification code and public signals)
●​ Pass signals
●​ Validate static data
●​ Validate on-chain data
●​ Verify proof​

From these building blocks, complex applications emerge. Examples include verifying
ownership of an email address via ZKEmail, proving identity attributes via ZKPassport, checking
historical NFT ownership, or even validating TLS-Notary attestations. Because conditions must
be verifiable at any time after they become valid, designs naturally support cross-chain proofs
and interoperable recovery logic. Nihilium’s core protocol will provide an ever extending set of
unseal conditions and invites developers to build their own.

Financials

Nihilium’s incentive model reinforces censorship resistance.

●​ Sealing is prepaid, covering processor costs and staking requirements.
●​ Unsealing is free — once a commitment exists, processors are economically bound to

execute.​

This asymmetry ensures that no recovering party can ever be extorted with “pay-to-unseal” fees.
A processor that refuses to act risks slashing, while an honest processor faces no incentive
misalignment.​

Applications

Web3 “Forgot My Password”

The clearest application of Nihilium is universal key recovery. A client seals a secret — a
password, seed phrase, or private key — under chosen unseal conditions. To recover, the client
must publish the unseal initiation value on-chain, making the attempt observable. The
sealed package itself can be stored anywhere, even by a developer or third party, because only
the rightful user can satisfy the unseal conditions (e.g., ZKEmail proof). The flow mirrors the
familiar Web2 “forgot my password” experience, but without custodians or common trust
assumptions.

Secure File Transfers

Our live application at transfer.nihilium.io demonstrates sealed file exchange. A file is encrypted,
and its decryption key is placed in a sealed package. When the recipient unseals, both parties
gain cryptographic proof that the file was accessed — without relying on a central authority.
Unlike traditional file transfer services that enforce access centrally, Nihilium shifts access
control into a decentralized proof layer. Developers can use the SDK to plug sealed transfers
into any backend — S3, IPFS, or custom storage.

Emergency Access to Medical Data

Privacy is vital in healthcare, yet data must be accessible in emergencies. Nihilium enables
patients to store critical medical data (e.g., allergies, medications) in sealed packages.
Authorized staff can access the data during emergencies, but every unseal attempt is publicly
observable. Patients can thus guarantee their data remains private until truly needed — and
know if it was ever accessed prematurely.

Compliance & Oversight

Unseal conditions can be written to enforce due process especially in regulated contexts. For
example, a root certificate might be stored under a “break-glass” procedure requiring multiple
verifiable proofs before access. Or law enforcement could be given the ability to request access
(as with a doorbell camera), but every access attempt would be logged and provable. We call
this keeping honest people honest: even powerful actors cannot bypass the rules without
detection.

https://transfer.nihilium.io?utm_source=chatgpt.com

An Application-Agnostic Primitive

These applications are only a few examples. Because Nihilium is built around sealed packages
and verifiable unseal conditions, it is not tied to any single use case or ecosystem. Any condition
that can be proven — from identity attestations to cross-chain state proofs — can serve as the
key to unlock a secret. This makes Nihilium an application-agnostic primitive: a foundation for
censorship-resistant recovery, coordination, and access control across domains well beyond
Web3.

Differentiation

Nihilium is not just another key-recovery scheme or access-control tool. Several approaches
exist today, but all fall short of combining censorship resistance, universality, and usability:

●​ Not Social Recovery​
Social recovery schemes rely on peers or guardians coordinating to return access. This
creates orchestration overhead, privacy risks, and potential collusion. Nihilium requires
no coordination beyond the user presenting proofs.​

●​ Not Custodial Recovery​
Custodians can deny service, shut down, or fall under regulatory capture. In Nihilium,
processors cannot selectively refuse requests without provable slashing, and users can
store sealed packages anywhere without depending on a central operator.​

●​ Not Just MPC​
Multi-party computation focuses on distributing trust across participants, but it usually
locks recovery into a single context (e.g., one wallet). Nihilium’s sealed packages are
context-agnostic: the same primitive works for wallets, files, credentials, or identity
proofs.​

●​ Proofs Are Client-Side​
In many systems, servers or nodes are responsible for producing or orchestrating proofs.
In Nihilium, the burden is inverted: the client generates all proofs, and processors only
validate them. This keeps processors lightweight and stateless, reduces trust
assumptions, and ensures the onus of proof always lies with the party seeking recovery.​

What sets Nihilium apart is the combination:

●​ Context-agnostic sealed packages.
●​ Proof-driven recovery with no orchestration burden.
●​ Incentive-aligned processors bound by slashable commitments.
●​ Client-side proof generation with processor-side validation only.
●​ Minimal reliance on-chain, scaling indefinitely without bottlenecks.​

Together, these elements make Nihilium a new primitive: sealed access control, capable of
supporting recovery, compliance, and coordination without trust in intermediaries.

The business model

​
​
Nihilium’s business model is service-focused. The protocol itself is permissionless: anyone can
run a processor, and any client can create sealed packages. But without coordination,
developers would need to negotiate directly with processors — a fragmented and unworkable
experience.

To solve this, Nihilium the company will operate the sealing marketplace. Developers can
register, purchase capacity from processors, and integrate through familiar workflows using API
keys and SDKs. This smooths developer adoption without compromising protocol guarantees:
the client remains in full control, seals stay unlinkable, and unsealing is always free.

On top of this, Nihilium will provide observability services. Because sealed packages contain
a public component, initiation events can be monitored externally. This enables notification
services ranging from simple email alerts to app push notifications or even proactive outreach in
critical scenarios.

Finally, Nihilium will also be an early user of its own network. Our first application, Nihilium
Transfer, demonstrates sealed file transfers in production. Over time, we intend to launch and
co-found additional products that leverage this primitive.

There is no token planned for the network initially. We believe payments to processors should
remain an independent economic activity, and that the asset used for staking should not derive
its value from speculative network dynamics.

​
In short: Nihilium makes a censorship-resistant primitive developer-friendly — by operating the
marketplace, tools, and services that bring sealed packages into real applications at scale.

 @nihiliumio​

Email: contact@nihilium.io

https://x.com/nihiliumio

	
	NIHILIUM
	Summary
	The core concept
	​Sealed Packages
	Enforcement Layer
	Unseal Conditions

	Architecture
	Clients

	Processors
	Enforcement Layer
	Unseal Conditions
	
	Financials

	Applications
	Web3 “Forgot My Password”
	Secure File Transfers
	Emergency Access to Medical Data
	Compliance & Oversight
	An Application-Agnostic Primitive

	Differentiation
	The business model

